Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders.

Journal: Computers in biology and medicine
Published Date:

Abstract

To estimate the reliability and cognitive states of operator performance in a human-machine collaborative environment, we propose a novel human mental workload (MW) recognizer based on deep learning principles and utilizing the features of the electroencephalogram (EEG). To determine personalized properties in high dimensional EEG indicators, we introduce a feature mapping layer in stacked denoising autoencoder (SDAE) that is capable of preserving the local information in EEG dynamics. The ensemble classifier is then built via the subject-specific integrated deep learning committee, and adapts to the cognitive properties of a specific human operator and alleviates inter-subject feature variations. We validate our algorithms and the ensemble SDAE classifier with local information preservation (denoted by EL-SDAE) on an EEG database collected during the execution of complex human-machine tasks. The classification performance indicates that the EL-SDAE outperforms several classical MW estimators when its optimal network architecture has been identified.

Authors

  • Shuo Yang
    Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China.
  • Zhong Yin
  • Yagang Wang
    School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
  • Wei Zhang
    The First Affiliated Hospital of Nanchang University, Nanchang, China.
  • Yongxiong Wang
    School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
  • Jianhua Zhang