Chinese Clinical Named Entity Recognition Using Residual Dilated Convolutional Neural Network With Conditional Random Field.

Journal: IEEE transactions on nanobioscience
Published Date:

Abstract

Clinical named entity recognition (CNER) is a fundamental and crucial task for clinical and translation research. In recent years, deep learning methods have achieved significant success in CNER tasks. However, these methods depend greatly on recurrent neural networks (RNNs), which maintain a vector of hidden activations that are propagated through time, thus causing too much time to train models. In this paper, we propose a residual dilated convolutional neural network with the conditional random field (RD-CNN-CRF) for the Chinese CNER, which makes the model asynchronous in computation and thus speeding up the training period dramatically. To be more specific, Chinese characters and dictionary features are first projected into dense vector representations, then they are fed into the residual dilated convolutional neural network to capture contextual features. Finally, a conditional random field is employed to capture dependencies between neighboring tags and obtain the optimal tag sequence for the entire sequence. Computational results on the CCKS-2017 Task 2 benchmark dataset show that our proposed RD-CNN-CRF method competes favorably with state-of-the-art RNN-based methods both in terms of computational performance and training time.

Authors

  • Jiahui Qiu
  • Yangming Zhou
    School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address: ymzhou@ecust.edu.cn.
  • Qi Wang
    Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Tong Ruan
    East China University of Science and Technology, Shanghai, China. ruantong@ecust.edu.cn.
  • Ju Gao
    Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225002 Yangzhou, Jiangsu, China.