RIANet: Recurrent interleaved attention network for cardiac MRI segmentation.
Journal:
Computers in biology and medicine
Published Date:
May 7, 2019
Abstract
BACKGROUND: Segmentation of anatomical structures of the heart from cardiac magnetic resonance images (MRI) has a significant impact on the quantitative analysis of the cardiac contractile function. Although deep convolutional neural networks (ConvNets) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing deep ConvNets to precisely and automatically segment multiple heart structures from cardiac MRI. This paper presents a novel recurrent interleaved attention network (RIANet) to comprehensively tackle this issue.