AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Heart

Showing 1 to 10 of 453 articles

Clear Filters

Predicting Sleep Quality via Unsupervised Learning of Cardiac Activity.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
While highly important for a person's mood, productivity, and physical performance, perceived sleep quality is challenging to model and, thus, predict with passive means such as physiological and behavioral signals alone. In this paper, we propose a ...

Assessing the cardioprotective effects of exercise in APOE mouse models using deep learning and photon-counting micro-CT.

PloS one
BACKGROUND: The allelic variations of the apolipoprotein E (APOE) gene play a critical role in regulating lipid metabolism and significantly impact cardiovascular disease risk (CVD). This study aimed to evaluate the impact of exercise on cardiac stru...

Parallel convolutional neural networks for non-invasive cardiac hemodynamic estimation: integrating uncalibrated PPG signals with nonlinear feature analysis.

Physiological measurement
Understanding cardiac hemodynamic status (CHS) is essential for accurate cardiovascular health assessment, as it is governed by key parameters such as cardiac output (CO), systemic vascular resistance (SVR), and arterial compliance (AC). This study a...

CACTUS: An open dataset and framework for automated Cardiac Assessment and Classification of Ultrasound images using deep transfer learning.

Computers in biology and medicine
Cardiac ultrasound (US) scanning is one of the most commonly used techniques in cardiology to diagnose the health of the heart and its proper functioning. During a typical US scan, medical professionals take several images of the heart to be classifi...

Deep learning-based automated segmentation of cardiac real-time MRI in non-human primates.

Computers in biology and medicine
Advanced imaging techniques, like magnetic resonance imaging (MRI), have revolutionised cardiovascular disease diagnosis and monitoring in humans and animal models. Real-time (RT) MRI, which can capture a single slice during each consecutive heartbea...

Deep learning based estimation of heart surface potentials.

Artificial intelligence in medicine
Electrocardiographic imaging (ECGI) aims to noninvasively estimate heart surface potentials starting from body surface potentials. This is classically based on geometric information on the torso and the heart from imaging, which complicates clinical ...

Self-supervised learning for label-free segmentation in cardiac ultrasound.

Nature communications
Segmentation and measurement of cardiac chambers from ultrasound is critical, but laborious and poorly reproducible. Neural networks can assist, but supervised approaches require the same problematic manual annotations. We build a pipeline for self-s...

An end-to-end neural network for 4D cardiac CT reconstruction using single-beat scans.

Physics in medicine and biology
Motion artifacts remain a significant challenge in cardiac CT imaging, often impairing the accurate detection and diagnosis of cardiac diseases. These artifacts result from involuntary cardiac motion, and traditional mitigation methods typically rely...

Free-breathing, Highly Accelerated, Single-beat, Multisection Cardiac Cine MRI with Generative Artificial Intelligence.

Radiology. Cardiothoracic imaging
Purpose To develop and evaluate a free-breathing, highly accelerated, multisection, single-beat cine sequence for cardiac MRI. Materials and Methods This prospective study, conducted from July 2022 to December 2023, included participants with various...

Semi-Supervised Echocardiography Video Segmentation via Adaptive Spatio-Temporal Tensor Semantic Awareness and Memory Flow.

IEEE transactions on medical imaging
Accurate segmentation of cardiac structures in echocardiography videos is vital for diagnosing heart disease. However, challenges such as speckle noise, low spatial resolution, and incomplete video annotations hinder the accuracy and efficiency of se...