Development of a deep neural network for generating synthetic dual-energy chest x-ray images with single x-ray exposure.

Journal: Physics in medicine and biology
Published Date:

Abstract

Dual-energy chest radiography (DECR) is a medical imaging technology that can improve diagnostic accuracy. This technique can decompose single-energy chest radiography (SECR) images into separate bone- and soft tissue-only images. This can, however, double the radiation exposure to the patient. To address this limitation, we developed an algorithm for the synthesis of DECR from a SECR through deep learning. To predict high resolution images, we developed a novel deep learning architecture by modifying a conventional U-net to take advantage of the high frequency-dominant information that propagates from the encoding part to the decoding part. In addition, we used the anticorrelated relationship (ACR) of DECR for improving the quality of the predicted images. For training data, 300 pairs of SECR and their corresponding DECR images were used. To test the trained model, 50 DECR images from Yonsei University Severance Hospital and 662 publicly accessible SECRs were used. To evaluate the performance of the proposed method, we compared DECR and predicted images using a structural similarity approach (SSIM). In addition, we quantitatively evaluated image quality calculating the modulation transfer function and coefficient of variation. The proposed model selectively predicted the bone- and soft tissue-only CR images from an SECR image. The strategy for improving the spatial resolution by ACR was effective. Quantitative evaluation showed that the proposed method with ACR showed relatively high SSIM (over 0.85). In addition, predicted images with the proposed ACR model achieved better image quality measures than those of U-net. In conclusion, the proposed method can obtain high-quality bone- and soft tissue-only CR images without the need for additional hardware for double x-ray exposures in clinical practice.

Authors

  • Donghoon Lee
    Department of Radiation Convergence Engineering, Research Institute of Health Science, Yonsei Univeristy, 1 Yonseidae-gil, Wonju, Gangwon, 26493, Korea.
  • Hwiyoung Kim
    Department of Radiological Science, Yonsei University College of Medicine, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. Electronic address: HYKIM82@yuhs.ac.
  • Byungwook Choi
  • Hee-Joung Kim
    Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 220-710, Republic of Korea; Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 220-710, Republic of Korea. Electronic address: hjk1@yonsei.ac.kr.