Testing the ability of unmanned aerial systems and machine learning to map weeds at subfield scales: a test with the weed Alopecurus myosuroides (Huds).
Journal:
Pest management science
PMID:
30972939
Abstract
BACKGROUND: It is important to map agricultural weed populations to improve management and maintain future food security. Advances in data collection and statistical methodology have created new opportunities to aid in the mapping of weed populations. We set out to apply these new methodologies (unmanned aerial systems; UAS) and statistical techniques (convolutional neural networks; CNN) to the mapping of black-grass, a highly impactful weed in wheat fields in the UK. We tested this by undertaking extensive UAS and field-based mapping over the course of 2 years, in total collecting multispectral image data from 102 fields, with 76 providing informative data. We used these data to construct a vegetation index (VI), which we used to train a custom CNN model from scratch. We undertook a suite of data engineering techniques, such as balancing and cleaning to optimize performance of our metrics. We also investigate the transferability of the models from one field to another.