Automatic classification of IgA endomysial antibody test for celiac disease: a new method deploying machine learning.

Journal: Scientific reports
Published Date:

Abstract

Widespread use of endomysial autoantibody (EmA) test in diagnostics of celiac disease is limited due to its subjectivity and its requirement of an expert evaluator. The study aimed to determine whether machine learning can be applied to create a new observer-independent method of automatic assessment and classification of the EmA test for celiac disease. The study material comprised of 2597 high-quality IgA-class EmA images collected in 2017-2018. According to standard procedure, highly-experienced professional classified samples into the following four classes: I - positive, II - negative, III - IgA deficient, and IV - equivocal. Machine learning was deployed to create a classification model. The sensitivity and specificity of the model were 82.84% and 99.40%, respectively. The accuracy was 96.80%. The classification error was 3.20%. The area under the curve was 99.67%, 99.61%, 100%, and 99.89%, for I, II, III, and IV class, respectively. The mean assessment time per image was 16.11 seconds. This is the first study deploying machine learning for the automatic classification of IgA-class EmA test for celiac disease. The results indicate that using machine learning enables quick and precise EmA test analysis that can be further developed to simplify EmA analysis.

Authors

  • Florentino Luciano Caetano Dos Santos
    Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. florentino.l.c.santos@ieee.org.
  • Irmina Maria Michalek
    Faculty of Social Sciences, Tampere University, Tampere, Finland.
  • Kaija Laurila
    Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
  • Katri Kaukinen
    Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
  • Jari Hyttinen
    Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, Tampere, Finland.
  • Katri Lindfors
    Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.