Tensor Discriminant Analysis for MI-EEG Signal Classification Using Convolutional Neural Network.

Journal: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:

Abstract

Motor Imagery (MI) is a typical paradigm for Brain-Computer Interface (BCI) system. In this paper, we propose a new framework by introducing a tensor-based feature representation of the data and also utilizing a convolutional neural network (CNN) architecture for performing classification of MI-EEG signal. The tensor-based representation that includes the structural information in multi-channel time-varying EEG spectrum is generated from tensor discriminant analysis (TDA), and CNN is designed and optimized accordingly for this representation. Compared with CSP+SVM (the conventional framework which is the most successful in MI-based BCI) in the applications to the BCI competition III-IVa dataset, the proposed framework has the following advantages: (1) the most discriminant patterns can be obtained by applying optimum selection of spatial-spectral-temporal subspace for each subject; (2) the corresponding CNN can take full advantage of tensor-based representation and identify discriminative characteristics robustly. The results demonstrate that our framework can further improve classification performance and has great potential for the practical application of BCI.

Authors

  • Shoulin Huang
  • Hao Peng
    Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong, P. R. China.
  • Yang Chen
    Orthopedics Department of the First Affiliated Hospital of Tsinghua University, Beijing, China.
  • Kai Sun
    Department of Materials Science and Engineering, Jinan University.
  • Fang Shen
  • Tong Wang
    School of Public Health, Shanxi Medical University, Taiyuan 030000, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030000, China.
  • Ting Ma
    Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China.