Speech imagery is a nascent paradigm that is receiving widespread attention in current brain-computer interface (BCI) research. By collecting the electroencephalogram (EEG) data generated when imagining the pronunciation of a sentence or word in huma...
. Electroencephalography (EEG) signals can reflect motor intention signals in the brain. In recent years, motor imagery (MI) based brain-computer interfaces (BCIs) have attracted the attention of neuroinformatics researchers. Numerous deep learning m...
Electroencephalography (EEG) signal classification plays a critical role in various biomedical and cognitive research applications, including neurological disorder detection and cognitive state monitoring. However, these technologies face challenges ...
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering significant benefits for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI)...
The importance of using Brain-Computer Interface (BCI) systems based on electro encephalography (EEG) signal to decode Motor Imagery(MI) is very impressive because of the possibility of analyzing and translating brain signals related to movement inte...
Speech Imagery (SI) refers to the mental experience of hearing speech and may be the core of verbal thinking for people who undergo internal monologues. It belongs to the set of possible mental imagery states that produce kinesthetic experiences whos...
. Common spatial patterns (CSPs) has been established as a powerful feature extraction method in EEG signal processing with machine learning, but it has shortcomings including sensitivity to noise and rigidity in the value of the weights. Our goal wa...
The Spiking Neural Network (SNN) is a third-generation neural network recognized for its energy efficiency and ability to process spatiotemporal information, closely imitating the behavioral mechanisms of biological neurons in the brain. SNN exhibit ...
Motor imagery (MI) is a cognitive process requiring mental simulation of physical actions, engaging neural networks that overlap with those activated during actual execution. This study investigated the neural correlates of slow and fast MI in ten he...
IEEE journal of biomedical and health informatics
May 6, 2025
Robust decoding performance is essential for the practical deployment of brain-computer interface (BCI) systems. Existing EEG decoding models often rely on large amounts of annotated data collected through specific experimental setups, which fail to ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.