AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Imagination

Showing 1 to 10 of 197 articles

Clear Filters

Domain-Incremental Learning Framework for Continual Motor Imagery EEG Classification Task.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Due to inter-subject variability in electroencephalogram (EEG) signals, the generalization ability of many existing brain-computer interface (BCI) models is significantly limited. Although transfer learning (TL) offers a temporary solution, in scenar...

Bi-hemisphere Interaction Convolutional Neural Network for Motor Imagery Classification.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Decoding EEG-based, Motor Imagery Brain-Computer Interfaces (MI-BCI) in a subject-independent manner is very challenging due to high dimensionality of the EEG signal, and high inter-subject variability. In recent years, Convolutional neural networks ...

EEG Acquisition and Motor Imagery Classification for Robotic Control.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
The adoption of brain-computer interfaces (BCIs) has significantly increased in various application domains, particularly in the field of controlling robotic systems through motor imagery. The article contributes in two primary ways: 1) validating th...

Bi-Stream Adaptation Network for Motor Imagery Decoding.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Neural activities in distinct brain regions variably contribute to the formation of motor imagery (MI). Utilizing the hidden contextual information can thereby enhance network performance by having a comprehensive understanding of MI. Besides, due to...

Enhanced Brain Functional Interaction Following BCI-Guided Supernumerary Robotic Finger Training Based on Sixth-Finger Motor Imagery.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Supernumerary robotic finger (SRF) has shown unique advantages in the field of motor augmentation and rehabilitation, while the development of brain computer interface (BCI) technology has provided the possibility for direct control of SRF. However, ...

SMANet: A Model Combining SincNet, Multi-Branch Spatial-Temporal CNN, and Attention Mechanism for Motor Imagery BCI.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Building a brain-computer interface (BCI) based on motor imagery (MI) requires accurately decoding MI tasks, which poses a significant challenge due to individual discrepancy among subjects and low signal-to-noise ratio of EEG signals. We propose an ...

The More, the Better? Evaluating the Role of EEG Preprocessing for Deep Learning Applications.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
The last decade has witnessed a notable surge in deep learning applications for electroencephalography (EEG) data analysis, showing promising improvements over conventional statistical techniques. However, deep learning models can underperform if tra...

Hybrid CNN-GRU Models for Improved EEG Motor Imagery Classification.

Sensors (Basel, Switzerland)
Brain-computer interfaces (BCIs) based on electroencephalography (EEG) enable neural activity interpretation for device control, with motor imagery (MI) serving as a key paradigm for decoding imagined movements. Efficient feature extraction from raw ...

Multi-scale convolutional transformer network for motor imagery brain-computer interface.

Scientific reports
Brain-computer interface (BCI) systems allow users to communicate with external devices by translating neural signals into real-time commands. Convolutional neural networks (CNNs) have been effectively utilized for decoding motor imagery electroencep...

Dynamic Hierarchical Convolutional Attention Network for Recognizing Motor Imagery Intention.

IEEE transactions on cybernetics
The neural activity patterns of localized brain regions are crucial for recognizing brain intentions. However, existing electroencephalogram (EEG) decoding models, especially those based on deep learning, predominantly focus on global spatial feature...