Breast Cancer Detection and Diagnosis Using Mammographic Data: Systematic Review.

Journal: Journal of medical Internet research
Published Date:

Abstract

BACKGROUND: Machine learning (ML) has become a vital part of medical imaging research. ML methods have evolved over the years from manual seeded inputs to automatic initializations. The advancements in the field of ML have led to more intelligent and self-reliant computer-aided diagnosis (CAD) systems, as the learning ability of ML methods has been constantly improving. More and more automated methods are emerging with deep feature learning and representations. Recent advancements of ML with deeper and extensive representation approaches, commonly known as deep learning (DL) approaches, have made a very significant impact on improving the diagnostics capabilities of the CAD systems.

Authors

  • Syed Jamal Safdar Gardezi
    National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong, Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
  • Ahmed Elazab
    Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen 518055, China; University of Chinese Academy of Sciences, 52 Sanlihe Road, Beijing 100864, China.
  • Baiying Lei
  • Tianfu Wang
    School of Biomedical Engineering, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060, P.R.China.