Reachability Analysis of Neural Masses and Seizure Control Based on Combination Convolutional Neural Network.
Journal:
International journal of neural systems
Published Date:
Jan 1, 2020
Abstract
Epileptic seizures arise from synchronous firing of multiple spatially separated neural masses; therefore, many synchrony measures are used for seizure detection and characterization. However, synchrony measures reflect only the overall interaction strength among populations of neurons but cannot reveal the coupling strengths among individual populations, which is more important for seizure control. The concepts of reachability and reachable cluster were proposed to denote the coupling strengths of a set of neural masses. Here, we describe a seizure control method based on coupling strengths using combination convolutional neural network (CCNN) modeling. The neurophysiologically based neural mass model (NMM), which can bridge signal processing and neurophysiology, was used to simulate the proposed controller. Although the adjacency matrix and reachability matrix could not be identified perfectly, the vast majority of adjacency values were identified, reaching 95.64% using the CCNN with an optimal threshold. For cases of discrete and continuous coupling strengths, the proposed controller maintained the average reachable cluster strengths at about 0.1, indicating effective seizure control.