AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Epilepsy

Showing 1 to 10 of 372 articles

Clear Filters

Challenges and Opportunities: Nanomaterials in Epilepsy Diagnosis.

ACS nano
Epilepsy is a common neurological disorder characterized by a significant rate of disability. Accurate early diagnosis and precise localization of the epileptogenic zone are essential for timely intervention, seizure prevention, and personalized trea...

Clinical Value of ChatGPT for Epilepsy Presurgical Decision-Making: Systematic Evaluation of Seizure Semiology Interpretation.

Journal of medical Internet research
BACKGROUND: For patients with drug-resistant focal epilepsy, surgical resection of the epileptogenic zone (EZ) is an effective treatment to control seizures. Accurate localization of the EZ is crucial and is typically achieved through comprehensive p...

GAN-based synthetic FDG PET images from T1 brain MRI can serve to improve performance of deep unsupervised anomaly detection models.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Research in the cross-modal medical image translation domain has been very productive over the past few years in tackling the scarce availability of large curated multi-modality datasets with the promising performance of GAN...

Artificial intelligence applied to electroencephalography in epilepsy.

Revue neurologique
Artificial intelligence (AI) is progressively transforming all fields of medicine, promising substantial changes in clinical practice. In the context of epilepsy, electroencephalography (EEG), a technique used for over a century, has historically bee...

Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks.

Nature neuroscience
The temporal order of a sequence of events has been thought to be reflected in the ordered firing of neurons at different phases of theta oscillations. Here we assess this by measuring single neuron activity (1,420 neurons) and local field potentials...

EEG-based epilepsy detection using CNN-SVM and DNN-SVM with feature dimensionality reduction by PCA.

Scientific reports
This study focuses on epilepsy detection using hybrid CNN-SVM and DNN-SVM models, combined with feature dimensionality reduction through PCA. The goal is to evaluate the effectiveness and performance of these models in accurately identifying epilepti...

Artificial intelligence for the detection of interictal epileptiform discharges in EEG signals.

Revue neurologique
INTRODUCTION: Over the past decades, the integration of modern technologies - such as electronic health records, cloud computing, and artificial intelligence (AI) - has revolutionized the collection, storage, and analysis of medical data in neurology...

Artificial intelligence applied to epilepsy imaging: Current status and future perspectives.

Revue neurologique
In recent years, artificial intelligence (AI) has become an increasingly prominent focus of medical research, significantly impacting epileptology as well. Studies on deep learning (DL) and machine learning (ML) - the core of AI - have explored their...

Event driven neural network on a mixed signal neuromorphic processor for EEG based epileptic seizure detection.

Scientific reports
Long-term monitoring of biomedical signals is essential for the modern clinical management of neurological conditions such as epilepsy. However, developing wearable systems that are able to monitor, analyze, and detect epileptic seizures with long-la...

Retraining and evaluation of machine learning and deep learning models for seizure classification from EEG data.

Scientific reports
Electroencephalography (EEG) is one of the most used techniques to perform diagnosis of epilepsy. However, manual annotation of seizures in EEG data is a major time-consuming step in the analysis process of EEGs. Different machine learning models hav...