Tracheal Sound Analysis Using a Deep Neural Network to Detect Sleep Apnea.
Journal:
Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine
Published Date:
Aug 15, 2019
Abstract
STUDY OBJECTIVES: Portable devices for home sleep apnea testing are often limited by their inability to discriminate sleep/wake status, possibly resulting in underestimations. Tracheal sound (TS), which can be visualized as a spectrogram, carries information about apnea/hypopnea and sleep/wake status. We hypothesized that image analysis of all-night TS recordings by a deep neural network (DNN) would be capable of detecting breathing events and classifying sleep/wake status. The aim of this study is to develop a DNN-based system for sleep apnea testing and validate it using a large sampling of polysomnography (PSG) data.