Developing a fully automated evidence synthesis tool for identifying, assessing and collating the evidence.

Journal: BMJ evidence-based medicine
Published Date:

Abstract

Evidence synthesis is a key element of evidence-based medicine. However, it is currently hampered by being labour intensive meaning that many trials are not incorporated into robust evidence syntheses and that many are out of date. To overcome this, a variety of techniques are being explored, including using automation technology. Here, we describe a fully automated evidence synthesis system for intervention studies, one that identifies all the relevant evidence, assesses the evidence for reliability and collates it to estimate the relative effectiveness of an intervention. Techniques used include machine learning, natural language processing and rule-based systems. Results are visualised using modern visualisation techniques. We believe this to be the first, publicly available, automated evidence synthesis system: an evidence mapping tool that synthesises evidence on the fly.

Authors

  • Jon Brassey
    Trip Database Ltd, Newport, UK jon.brassey@tripdatabase.com.
  • Christopher Price
    Stroke Research Group, Population Health Sciences Institute / Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Jonny Edwards
    Thoughtful Technology, Newcastle, UK.
  • Markus Zlabinger
    Institute of Information Systems Engineering, TU Wien (Vienna University of Technology), Vienna, Austria.
  • Alexandros Bampoulidis
    Institute of Information Systems Engineering, TU Wien (Vienna University of Technology), Vienna, Austria.
  • Allan Hanbury
    Institute of Information Systems Engineering, TU Wien (Vienna University of Technology), Vienna, Austria.