Quasi-Synchronization of Time Delay Markovian Jump Neural Networks With Impulsive-Driven Transmission and Fading Channels.
Journal:
IEEE transactions on cybernetics
Published Date:
Oct 28, 2019
Abstract
The problem of quasi-synchronization (QS) for the Markovian jump master-slave neural networks with time-varying delay is studied in this article, where the mismatch parameters and unreliable communication channels are considered as well. A set of stochastic variables with different expectations are used to describe the fading phenomena of parallel communication channels. An impulsive-driven transmission strategy is designed to reduce the communication load, and a corresponding impulsive controller is then designed. A synchronization error system (SES) is obtained, and a convex QS condition is established for the SES. A linear matrix inequality-based iterative algorithm is proposed to reduce the bound of the SES, and the corresponding controller gains are calculated. A numerical example is provided to illustrate the effectiveness of the developed result.