Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks.
Journal:
Sleep
Published Date:
Oct 21, 2019
Abstract
STUDY OBJECTIVES: Polysomnography (PSG) scoring is labor intensive and suffers from variability in inter- and intra-rater reliability. Automated PSG scoring has the potential to reduce the human labor costs and the variability inherent to this task. Deep learning is a form of machine learning that uses neural networks to recognize data patterns by inspecting many examples rather than by following explicit programming.