Neural networks with circular filters enable data efficient inference of sequence motifs.
Journal:
Bioinformatics (Oxford, England)
Published Date:
Oct 15, 2019
Abstract
MOTIVATION: Nucleic acids and proteins often have localized sequence motifs that enable highly specific interactions. Due to the biological relevance of sequence motifs, numerous inference methods have been developed. Recently, convolutional neural networks (CNNs) have achieved state of the art performance. These methods were able to learn transcription factor binding sites from ChIP-seq data, resulting in accurate predictions on test data. However, CNNs typically distribute learned motifs across multiple filters, making them difficult to interpret. Furthermore, networks trained on small datasets often do not generalize well to new sequences.