A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China.

Journal: International journal of environmental research and public health
Published Date:

Abstract

The Yangtze River Delta (YRD) is one of the most developed regions in China. This is also a flood-prone area where flood disasters are frequently experienced; the situations between the people-land nexus and the people-water nexus are very complicated. Therefore, the accurate assessment of flood risk is of great significance to regional development. The paper took the YRD urban agglomeration as the research case. The driving force, pressure, state, impact and response (DPSIR) conceptual framework was established to analyze the indexes of flood disasters. The random forest (RF) algorithm was used to screen important indexes of floods risk, and a risk assessment model based on the radial basis function (RBF) neural network was constructed to evaluate the flood risk level in this region from 2009 to 2018. The risk map showed the I-V level of flood risk in the YRD urban agglomeration from 2016 to 2018 by using the geographic information system (GIS). Further analysis indicated that the indexes such as flood season rainfall, urban impervious area ratio, gross domestic product (GDP) per square kilometer of land, water area ratio, population density and emergency rescue capacity of public administration departments have important influence on flood risk. The flood risk has been increasing in the YRD urban agglomeration during the past ten years under the urbanization background, and economic development status showed a significant positive correlation with flood risks. In addition, there were serious differences in the rising rate of flood risks and the status quo among provinces. There are still a few cities that have stabilized at a better flood-risk level through urban flood control measures from 2016 to 2018. These results were basically in line with the actual situation, which validated the effectiveness of the model. Finally, countermeasures and suggestions for reducing the urban flood risk in the YRD region were proposed, in order to provide decision support for flood control, disaster reduction and emergency management in the YRD region.

Authors

  • Junfei Chen
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China.
  • Qian Li
    Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
  • Huimin Wang
    Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian 271018, China.
  • Menghua Deng
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China.