A study of deep learning methods for de-identification of clinical notes in cross-institute settings.
Journal:
BMC medical informatics and decision making
Published Date:
Dec 5, 2019
Abstract
BACKGROUND: De-identification is a critical technology to facilitate the use of unstructured clinical text while protecting patient privacy and confidentiality. The clinical natural language processing (NLP) community has invested great efforts in developing methods and corpora for de-identification of clinical notes. These annotated corpora are valuable resources for developing automated systems to de-identify clinical text at local hospitals. However, existing studies often utilized training and test data collected from the same institution. There are few studies to explore automated de-identification under cross-institute settings. The goal of this study is to examine deep learning-based de-identification methods at a cross-institute setting, identify the bottlenecks, and provide potential solutions.