A non-parametric effect-size measure capturing changes in central tendency and data distribution shape.
Journal:
PloS one
PMID:
32970758
Abstract
MOTIVATION: Calculating the magnitude of treatment effects or of differences between two groups is a common task in quantitative science. Standard effect size measures based on differences, such as the commonly used Cohen's, fail to capture the treatment-related effects on the data if the effects were not reflected by the central tendency. The present work aims at (i) developing a non-parametric alternative to Cohen's d, which (ii) circumvents some of its numerical limitations and (iii) involves obvious changes in the data that do not affect the group means and are therefore not captured by Cohen's d.