Incorporating biological structure into machine learning models in biomedicine.

Journal: Current opinion in biotechnology
Published Date:

Abstract

In biomedical applications of machine learning, relevant information often has a rich structure that is not easily encoded as real-valued predictors. Examples of such data include DNA or RNA sequences, gene sets or pathways, gene interaction or coexpression networks, ontologies, and phylogenetic trees. We highlight recent examples of machine learning models that use structure to constrain model architecture or incorporate structured data into model training. For machine learning in biomedicine, where sample size is limited and model interpretability is crucial, incorporating prior knowledge in the form of structured data can be particularly useful. The area of research would benefit from performant open source implementations and independent benchmarking efforts.

Authors

  • Jake Crawford
    Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
  • Casey S Greene
    Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, United States; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, United States. Electronic address: csgreene@upenn.edu.