Ensuring electronic medical record simulation through better training, modeling, and evaluation.
Journal:
Journal of the American Medical Informatics Association : JAMIA
PMID:
31592533
Abstract
OBJECTIVE: Electronic medical records (EMRs) can support medical research and discovery, but privacy risks limit the sharing of such data on a wide scale. Various approaches have been developed to mitigate risk, including record simulation via generative adversarial networks (GANs). While showing promise in certain application domains, GANs lack a principled approach for EMR data that induces subpar simulation. In this article, we improve EMR simulation through a novel pipeline that (1) enhances the learning model, (2) incorporates evaluation criteria for data utility that informs learning, and (3) refines the training process.