DENSE-INception U-net for medical image segmentation.
Journal:
Computer methods and programs in biomedicine
Published Date:
Feb 15, 2020
Abstract
BACKGROUND AND OBJECTIVE: Convolutional neural networks (CNNs) play an important role in the field of medical image segmentation. Among many kinds of CNNs, the U-net architecture is one of the most famous fully convolutional network architectures for medical semantic segmentation tasks. Recent work shows that the U-net network can be substantially deeper thus resulting in improved performance on segmentation tasks. Though adding more layers directly into network is a popular way to make a network deeper, it may lead to gradient vanishing or redundant computation during training.