Hybrid Deep Learning Predictor for Smart Agriculture Sensing Based on Empirical Mode Decomposition and Gated Recurrent Unit Group Model.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Smart agricultural sensing has enabled great advantages in practical applications recently, making it one of the most important and valuable systems. For outdoor plantation farms, the prediction of climate data, such as temperature, wind speed, and humidity, enables the planning and control of agricultural production to improve the yield and quality of crops. However, it is not easy to accurately predict climate trends because the sensing data are complex, nonlinear, and contain multiple components. This study proposes a hybrid deep learning predictor, in which an empirical mode decomposition (EMD) method is used to decompose the climate data into fixed component groups with different frequency characteristics, then a gated recurrent unit (GRU) network is trained for each group as the sub-predictor, and finally the results from the GRU are added to obtain the prediction result. Experiments based on climate data from an agricultural Internet of Things (IoT) system verify the development of the proposed model. The prediction results show that the proposed predictor can obtain more accurate predictions of temperature, wind speed, and humidity data to meet the needs of precision agricultural production.

Authors

  • Xue-Bo Jin
    School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China. jinxuebo@btbu.edu.cn.
  • Nian-Xiang Yang
    School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China.
  • Xiao-Yi Wang
    Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
  • Yu-Ting Bai
    School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China.
  • Ting-Li Su
    School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China.
  • Jian-Lei Kong
    School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China. kongjianlei@btbu.edu.cn.