Dynamic time warping-based transfer learning for improving common spatial patterns in brain-computer interface.
Journal:
Journal of neural engineering
Published Date:
Feb 18, 2020
Abstract
OBJECTIVE: Common spatial patterns (CSP) is a prominent feature extraction algorithm in motor imagery (MI)-based brain-computer interfaces (BCIs). However, CSP is computed using sample-based covariance-matrix estimation. Hence, its performance deteriorates if the number of training trials is small. To address this problem, this paper proposes a novel regularized covariance matrix estimation framework for CSP (i.e. DTW-RCSP) based on dynamic time warping (DTW) and transfer learning.