Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.

Journal: Medical engineering & physics
Published Date:

Abstract

This paper presents the design of a motion intent recognition system, based on an altitude signal sensor, to improve the human-robot interaction performance of upper limb exoskeleton robots during rehabilitation training. A modified adaptive Kalman filter combined with clipping filtering is proposed for the control system to mitigate the noise and time delay of the collected signal. The clipping filtering method was used to filter the accidental error and avoid the safety problem caused by a mistrigger. A modified adaptive Kalman filter was used to account for the sudden change of the motion state during rehabilitation training. The results show that the intent recognition system designed herein can accurately recognize the human-robot interaction information, and estimate the intent of human motion in time. Therefore, it can be concluded that the designed system effectively follows the predicted motion intent with the proposed method, which is a significant improvement for human-robot interaction control of upper limb extremity rehabilitation robots.

Authors

  • Wang Wendong
    School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China. Electronic address: wdwang@nwpu.edu.cn.
  • Li Hanhao
    School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China.
  • Xiao Menghan
    School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China.
  • Chu Yang
    School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China.
  • Yuan Xiaoqing
    School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China. Electronic address: Yuan@nwpu.edu.cn.
  • Ming Xing
    School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China.
  • Zhang Bing
    School of Mechanical Engineering, Dongguan University of Technology, China.