Correction of out-of-FOV motion artifacts using convolutional neural network.
Journal:
Magnetic resonance imaging
Published Date:
May 25, 2020
Abstract
PURPOSE: Subject motion during MRI scan can result in severe degradation of image quality. Existing motion correction algorithms rely on the assumption that no information is missing during motions. However, this assumption does not hold when out-of-FOV motion happens. Currently available algorithms are not able to correct for image artifacts introduced by out-of-FOV motion. The purpose of this study is to demonstrate the feasibility of incorporating convolutional neural network (CNN) derived prior image into solving the out-of-FOV motion problem.