Structured Event Memory: A neuro-symbolic model of event cognition.

Journal: Psychological review
PMID:

Abstract

Humans spontaneously organize a continuous experience into discrete events and use the learned structure of these events to generalize and organize memory. We introduce the (SEM) model of event cognition, which accounts for human abilities in event segmentation, memory, and generalization. SEM is derived from a probabilistic generative model of event dynamics defined over structured symbolic scenes. By embedding symbolic scene representations in a vector space and parametrizing the scene dynamics in this continuous space, SEM combines the advantages of structured and neural network approaches to high-level cognition. Using probabilistic reasoning over this generative model, SEM can infer event boundaries, learn event schemata, and use event knowledge to reconstruct past experience. We show that SEM can scale up to high-dimensional input spaces, producing human-like event segmentation for naturalistic video data, and accounts for a wide array of memory phenomena. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

Authors

  • Nicholas T Franklin
    Department of Psychology, Harvard University.
  • Kenneth A Norman
    Princeton Neuroscience Institute and Department of Psychology, Princeton, NJ 08544, USA.
  • Charan Ranganath
    Center for Neuroscience and Department of Psychology, University of California, Davis.
  • Jeffrey M Zacks
    Department of Psychological and Brain Sciences and Department of Radiology, Washington University in St. Louis.
  • Samuel J Gershman
    Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA. gershman@fas.harvard.edu horvitz@microsoft.com jbt@mit.edu.