Using a Motion Sensor to Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Nonspecific low back pain (NSLBP) constitutes a critical health challenge that impacts millions of people worldwide with devastating health and socioeconomic consequences. In today's clinical settings, practitioners continue to follow conventional guidelines to categorize NSLBP patients based on subjective approaches, such as the STarT Back Screening Tool (SBST). This study aimed to develop a sensor-based machine learning model to classify NSLBP patients into different subgroups according to quantitative kinematic data, i.e., trunk motion and balance-related measures, in conjunction with STarT output. Specifically, inertial measurement units (IMU) were attached to the trunks of ninety-four patients while they performed repetitive trunk flexion/extension movements on a balance board at self-selected pace. Machine learning algorithms (support vector machine (SVM) and multi-layer perceptron (MLP)) were implemented for model development, and SBST results were used as ground truth. The results demonstrated that kinematic data could successfully be used to categorize patients into two main groups: high vs. low-medium risk. Accuracy levels of ~75% and 60% were achieved for SVM and MLP, respectively. Additionally, among a range of variables detailed herein, time-scaled IMU signals yielded the highest accuracy levels (i.e., ~75%). Our findings support the improvement and use of wearable systems in developing diagnostic and prognostic tools for various healthcare applications. This can facilitate development of an improved, cost-effective quantitative NSLBP assessment tool in clinical and home settings towards effective personalized rehabilitation.

Authors

  • Masoud Abdollahi
    Laboratory of Wearable Technologies and Neuromusculoskeletal Research, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
  • Sajad Ashouri
    Laboratory of Wearable Technologies and Neuromusculoskeletal Research, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran. Electronic address: ashouri.sajad@gmail.com.
  • Mohsen Abedi
    Physiotherapy Research Center, Department of Physiotherapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Nasibeh Azadeh-Fard
    Industrial and Systems Engineering Department, Kate Gleason College of Engineering, Rochester Institute of Technology (RIT), Rochester, NY, United States.
  • Mohamad Parnianpour
    Laboratory of Wearable Technologies and Neuromusculoskeletal Research, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran. Electronic address: parnianpour@sharif.edu.
  • Kinda Khalaf
    Department of Biomedical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates.
  • Ehsan Rashedi
    Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.