Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature.
Journal:
Journal of infection and public health
Published Date:
Aug 1, 2020
Abstract
BACKGROUND: Healthcare-associated infections (HAIs) are the most frequent adverse events in healthcare and a global public health concern. Surveillance is the foundation for effective HAIs prevention and control. Manual surveillance is labor intensive, costly and lacks standardization. Artificial Intelligence (AI) and machine learning (ML) might support the development of HAI surveillance algorithms aimed at understanding HAIs risk factors, improve patient risk stratification, identification of transmission pathways, timely or real-time detection. Scant evidence is available on AI and ML implementation in the field of HAIs and no clear patterns emerges on its impact.