Four-Way Classification of EEG Responses To Virtual Robot Navigation.
Journal:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:
Jul 1, 2020
Abstract
Studies have shown the possibility of using brain signals that are automatically generated while observing a navigation task as feedback for semi-autonomous control of a robot. This allows the robot to learn quasi-optimal routes to intended targets. We have combined the subclassification of two different types of navigational errors, with the subclassification of two different types of correct navigational actions, to create a 4-way classification strategy, providing detailed information about the type of action the robot performed. We used a 2-stage stepwise linear discriminant analysis approach, and tested this using brain signals from 8 and 14 participants observing two robot navigation tasks. Classification results were significantly above the chance level, with mean overall accuracy of 44.3% and 36.0% for the two datasets. As a proof of concept, we have shown that it is possible to perform fine-grained, 4-way classification of robot navigational actions, based on the electroencephalogram responses of participants who only had to observe the task. This study provides the next step towards comprehensive implicit brain-machine communication, and towards an efficient semi-autonomous brain-computer interface.