Interpretable clinical prediction via attention-based neural network.
Journal:
BMC medical informatics and decision making
Published Date:
Jul 9, 2020
Abstract
BACKGROUND: The interpretability of results predicted by the machine learning models is vital, especially in the critical fields like healthcare. With the increasingly adoption of electronic healthcare records (EHR) by the medical organizations in the last decade, which accumulated abundant electronic patient data, neural networks or deep learning techniques are gradually being applied to clinical tasks by utilizing the huge potential of EHR data. However, typical deep learning models are black-boxes, which are not transparent and the prediction outcomes of which are difficult to interpret.