Development of Deep Learning Models to Predict Best-Corrected Visual Acuity from Optical Coherence Tomography.

Journal: Translational vision science & technology
PMID:

Abstract

PURPOSE: To develop deep learning (DL) models to predict best-corrected visual acuity (BCVA) from optical coherence tomography (OCT) images from patients with neovascular age-related macular degeneration (nAMD).

Authors

  • Michael G Kawczynski
    From the Department of Radiology and Biomedical Imaging (Y.D., J.H.S., H.T., R.H., N.W.J., T.P.C., M.S.A., C.M.A., S.C.B., R.R.F., S.Y.H., Y.S., R.A.H., M.H.P., B.L.F.) and Institute for Computational Health Sciences (J.H.S., M.G.K., H.T., D.L., K.A.Z., D.H.), University of California, San Francisco, 550 Parnassus Ave, San Francisco, CA 94143; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, Calif (Y.D.); and Department of Radiology, University of California, Davis, Sacramento, Calif (L.N.).
  • Thomas Bengtsson
    Genentech, Inc., South San Francisco, CA, USA.
  • Jian Dai
    Genentech, Inc., South San Francisco, CA, USA.
  • J Jill Hopkins
    Genentech, Inc., South San Francisco, CA, USA.
  • Simon S Gao
    gRED Computational Science, Genentech, Inc., South San Francisco, California.
  • Jeffrey R Willis
    Genentech, Inc., San Francisco, California, United States.