Predicting vaginal birth after previous cesarean: Using machine-learning models and a population-based cohort in Sweden.
Journal:
Acta obstetricia et gynecologica Scandinavica
PMID:
33031579
Abstract
INTRODUCTION: Predicting a woman's probability of vaginal birth after cesarean could facilitate the antenatal decision-making process. Having a previous vaginal birth strongly predicts vaginal birth after cesarean. Delivery outcome in women with only a cesarean delivery is more unpredictable. Therefore, to better predict vaginal birth in women with only one prior cesarean delivery and no vaginal deliveries would greatly benefit clinical practice and fill a key evidence gap in research. Our aim was to predict vaginal birth in women with one prior cesarean and no vaginal deliveries using machine-learning methods, and compare with a US prediction model and its further developed model for a Swedish setting.