An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Telemedicine and all types of monitoring systems have proven to be a useful and low-cost tool with a high level of applicability in cardiology. The objective of this work is to present an IoT-based monitoring system for cardiovascular patients. The system sends the ECG signal to a Fog layer service by using the LoRa communication protocol. Also, it includes an AI algorithm based on deep learning for the detection of Atrial Fibrillation and other heart rhythms. The automatic detection of arrhythmias can be complementary to the diagnosis made by the physician, achieving a better clinical vision that improves therapeutic decision making. The performance of the proposed system is evaluated on a dataset of 8.528 short single-lead ECG records using two merge MobileNet networks that classify data with an accuracy of 90% for atrial fibrillation.

Authors

  • Jaime A Rincon
    Institut Valencià d'Investigació en Intel·ligència Artificial (VRAIN), Universitat Politècnica de València, 46022 València, Spain.
  • Solanye Guerra-Ojeda
    Department of Physiology, School of Medicine, Universitat de València, 46010 València, Spain.
  • Carlos Carrascosa
    Departamento de Sistemas Informáticos y Computación (DSIC), Universitat Politécnica de Valéncia, Spain. Electronic address: carrasco@dsic.upv.es.
  • Vicente Julian
    Departamento de Sistemas Informáticos y Computación (DSIC), Universitat Politécnica de Valéncia, Spain. Electronic address: vinglada@dsic.upv.es.