Data Homogeneity Effect in Deep Learning-Based Prediction of Type 1 Diabetic Retinopathy.

Journal: Journal of diabetes research
Published Date:

Abstract

This study is aimed at evaluating a deep transfer learning-based model for identifying diabetic retinopathy (DR) that was trained using a dataset with high variability and predominant type 2 diabetes (T2D) and comparing model performance with that in patients with type 1 diabetes (T1D). The Kaggle dataset, which is a publicly available dataset, was divided into training and testing Kaggle datasets. In the comparison dataset, we collected retinal fundus images of T1D patients at Chang Gung Memorial Hospital in Taiwan from 2013 to 2020, and the images were divided into training and testing T1D datasets. The model was developed using 4 different convolutional neural networks (Inception-V3, DenseNet-121, VGG1, and Xception). The model performance in predicting DR was evaluated using testing images from each dataset, and area under the curve (AUC), sensitivity, and specificity were calculated. The model trained using the Kaggle dataset had an average (range) AUC of 0.74 (0.03) and 0.87 (0.01) in the testing Kaggle and T1D datasets, respectively. The model trained using the T1D dataset had an AUC of 0.88 (0.03), which decreased to 0.57 (0.02) in the testing Kaggle dataset. Heatmaps showed that the model focused on retinal hemorrhage, vessels, and exudation to predict DR. In wrong prediction images, artifacts and low-image quality affected model performance. The model developed with the high variability and T2D predominant dataset could be applied to T1D patients. Dataset homogeneity could affect the performance, trainability, and generalization of the model.

Authors

  • Jui-En Lo
    School of Medicine, National Taiwan University College of Medicine, Taipei 106, Taiwan.
  • Eugene Yu-Chuan Kang
    Department of Ophthalmology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
  • Yun-Nung Chen
    Department of Computer Science and Information Engineering National Taiwan University, Taipei 106, Taiwan.
  • Yi-Ting Hsieh
    Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
  • Nan-Kai Wang
    Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, 333.
  • Ta-Ching Chen
    Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
  • Kuan-Jen Chen
    Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, 333.
  • Wei-Chi Wu
    Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, 333. weichi666@gmail.com.
  • Yih-Shiou Hwang
    Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, 333.
  • Fu-Sung Lo
    College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
  • Chi-Chun Lai
    Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, 333.