Detection of child depression using machine learning methods.
Journal:
PloS one
Published Date:
Dec 16, 2021
Abstract
BACKGROUND: Mental health problems, such as depression in children have far-reaching negative effects on child, family and society as whole. It is necessary to identify the reasons that contribute to this mental illness. Detecting the appropriate signs to anticipate mental illness as depression in children and adolescents is vital in making an early and accurate diagnosis to avoid severe consequences in the future. There has been no research employing machine learning (ML) approaches for depression detection among children and adolescents aged 4-17 years in a precisely constructed high prediction dataset, such as Young Minds Matter (YMM). As a result, our objective is to 1) create a model that can predict depression in children and adolescents aged 4-17 years old, 2) evaluate the results of ML algorithms to determine which one outperforms the others and 3) associate with the related issues of family activities and socioeconomic difficulties that contribute to depression.