Analyzing the Check-In Behavior of Visitors through Machine Learning Model by Mining Social Network's Big Data.

Journal: Computational and mathematical methods in medicine
PMID:

Abstract

The current article paper is aimed at assessing and comparing the seasonal check-in behavior of individuals in Shanghai, China, using location-based social network (LBSN) data and a variety of spatiotemporal analytic techniques. The article demonstrates the uses of location-based social network's data by analyzing the trends in check-ins throughout a three-year term for health purpose. We obtained the geolocation data from Sina Weibo, one of the biggest renowned Chinese microblogs (Weibo). The composed data is converted to geographic information system (GIS) type and assessed using temporal statistical analysis and spatial statistical analysis using kernel density estimation (KDE) assessment. We have applied various algorithms and trained machine learning models and finally satisfied with sequential model results because the accuracy we got was leading amongst others. The location cataloguing is accomplished via the use of facts about the characteristics of physical places. The findings demonstrate that visitors' spatial operations are more intense than residents' spatial operations, notably in downtown. However, locals also visited outlying regions, and tourists' temporal behaviors vary significantly while citizens' movements exhibit a more steady stable behavior. These findings may be used in destination management, metro planning, and the creation of digital cities.

Authors

  • Li Hou
    Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Beijing, China.
  • Qi Liu
    National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
  • Jamel Nebhen
    Prince Sattam bin Abdulaziz University, College of Computer Engineering and Sciences, Al-Kharj 11942, Saudi Arabia.
  • Mueen Uddin
    Department of Information Systems, Faculty of Engineering, Effat University, Jeddah, Saudi Arabia.
  • Mujahid Ullah
    Department of Computer Science, Preston University, Islamabad, Pakistan.
  • Naimat Ullah Khan
    School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.