Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique.
Journal:
TheScientificWorldJournal
PMID:
34819813
Abstract
INTRODUCTION: Early detection of visual symptoms in pterygium patients is crucial as the progression of the disease can cause visual disruption and contribute to visual impairment. Best-corrected visual acuity (BCVA) and corneal astigmatism influence the degree of visual impairment due to direct invasion of fibrovascular tissue into the cornea. However, there were different characteristics of pterygium used to evaluate the severity of visual impairment, including fleshiness, size, length, and redness. The innovation of machine learning technology in visual science may contribute to developing a highly accurate predictive analytics model of BCVA outcomes in postsurgery pterygium patients.