Classification of Arrhythmia in Heartbeat Detection Using Deep Learning.

Journal: Computational intelligence and neuroscience
Published Date:

Abstract

The electrocardiogram (ECG) is one of the most widely used diagnostic instruments in medicine and healthcare. Deep learning methods have shown promise in healthcare prediction challenges involving ECG data. This paper aims to apply deep learning techniques on the publicly available dataset to classify arrhythmia. We have used two kinds of the dataset in our research paper. One dataset is the MIT-BIH arrhythmia database, with a sampling frequency of 125 Hz with 1,09,446 ECG beats. The classes included in this first dataset are N, S, V, F, and Q. The second database is PTB Diagnostic ECG Database. The second database has two classes. The techniques used in these two datasets are the CNN model, CNN + LSTM, and CNN + LSTM + Attention Model. 80% of the data is used for the training, and the remaining 20% is used for testing. The result achieved by using these three techniques shows the accuracy of 99.12% for the CNN model, 99.3% for CNN + LSTM, and 99.29% for CNN + LSTM + Attention Model.

Authors

  • Wusat Ullah
    Department of Computer Science, Lahore Leads University, Lahore, Pakistan.
  • Imran Siddique
    Department of Mathematics, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
  • Rana Muhammad Zulqarnain
    Department of Mathematics, School of Science, University of Management and Technology, Sialkot Campus, Lahore, Pakistan.
  • Mohammad Mahtab Alam
    Department of Basic Medical Science, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
  • Irfan Ahmad
    Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
  • Usman Ahmad Raza
    Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan.