Multiscale Spatio-Temporal Graph Neural Networks for 3D Skeleton-Based Motion Prediction.

Journal: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Published Date:

Abstract

We propose a multiscale spatio-temporal graph neural network (MST-GNN) to predict the future 3D skeleton-based human poses in an action-category-agnostic manner. The core of MST-GNN is a multiscale spatio-temporal graph that explicitly models the relations in motions at various spatial and temporal scales. Different from many previous hierarchical structures, our multiscale spatio-temporal graph is built in a data-adaptive fashion, which captures nonphysical, yet motion-based relations. The key module of MST-GNN is a multiscale spatio-temporal graph computational unit (MST-GCU) based on the trainable graph structure. MST-GCU embeds underlying features at individual scales and then fuses features across scales to obtain a comprehensive representation. The overall architecture of MST-GNN follows an encoder-decoder framework, where the encoder consists of a sequence of MST-GCUs to learn the spatial and temporal features of motions, and the decoder uses a graph-based attention gate recurrent unit (GA-GRU) to generate future poses. Extensive experiments are conducted to show that the proposed MST-GNN outperforms state-of-the-art methods in both short and long-term motion prediction on the datasets of Human 3.6M, CMU Mocap and 3DPW, where MST-GNN outperforms previous works by 5.33% and 3.67% of mean angle errors in average for short-term and long-term prediction on Human 3.6M, and by 11.84% and 4.71% of mean angle errors for short-term and long-term prediction on CMU Mocap, and by 1.13% of mean angle errors on 3DPW in average, respectively. We further investigate the learned multiscale graphs for interpretability.

Authors

  • Maosen Li
  • Siheng Chen
  • Yangheng Zhao
  • Ya Zhang
    Department of Plant Protection, College of Plant Protection, Hunan Agricultural University, Changsha, China. Electronic address: zhangya230@126.com.
  • Yanfeng Wang
  • Qi Tian
    College of Biomedical Engineering and Instrument Science, Zhejiang University, Zheda Road, 310027 Hanghzou, China; Key Laboratory for Biomedical Engineering, Ministry of Education, China. Electronic address: Tianq@zju.edu.cn.