Identifying intentional injuries among children and adolescents based on Machine Learning.
Journal:
PloS one
PMID:
33471800
Abstract
BACKGROUND: Compared to other studies, the injury monitoring of Chinese children and adolescents has captured a low level of intentional injuries on account of self-harm/suicide and violent attacks. Intentional injuries in children and adolescents have not been apparent from the data. It is possible that there has been a misclassification of existing intentional injuries, and there is a lack of research literature on the misclassification of intentional injuries. This study aimed to discuss the feasibility of discriminating the intention of injury based on Machine Learning (ML) modelling and provided ideas for understanding whether there was a misclassification of intentional injuries.