AIMC Topic: Suicide

Clear Filters Showing 1 to 10 of 94 articles

Recent developments in omics studies and artificial intelligence in depression and suicide.

Translational psychiatry
Major depressive disorder (MDD) is the most prevalent and severe form of mental illness and is significantly linked to suicide. At present, addressing the treatment and prevention of depression and suicide poses significant challenges, largely due to...

Assessment of suicidal risk factors in young depressed persons with non-suicidal self-injury based on an artificial intelligence.

BMC psychology
INTRODUCTION: The role of non-suicidal self-injury (NSSI) in the suicide process of people with major depressive disorder(MDD) remains controversial. Therefore, the purpose of this study was to investigate the role NSSI plays in suicide risk in peopl...

Prediction of suicide using web based voice recordings analyzed by artificial intelligence.

Scientific reports
The integration of machine learning (ML) and deep learning models in suicide risk assessment has advanced significantly in recent years. In this study, we utilized ML in a case-control design, we predicted completed suicides using publicly available,...

Suicide Risk Screening in Jails: Protocol for a Pilot Study Leveraging the Mental Health Research Network Algorithm and Health Care Data.

JMIR research protocols
BACKGROUND: Suicide in local jails occurs at a higher rate than in the general population, requiring improvements to risk screening methods. Current suicide risk screening practices in jails are insufficient: They are commonly not conducted using val...

Suicide risk prediction for Korean adolescents based on machine learning.

Scientific reports
Traditional clinical risk assessment tools proved inadequate for reliably identifying individuals at high risk for suicidal behavior. As a result, machine learning (ML) techniques have become progressively incorporated into psychiatric care. This stu...

Decoding vital variables in predicting different phases of suicide among young adults with childhood sexual abuse: a machine learning approach.

Translational psychiatry
Young adults with childhood sexual abuse (CSA) are an especially vulnerable group to suicide. Suicide encompasses different phases, but for CSA survivors the salient factors precipitating suicide are rarely studied. In this study, from a progressive ...

The Application of AI to Ecological Momentary Assessment Data in Suicide Research: Systematic Review.

Journal of medical Internet research
BACKGROUND: Ecological momentary assessment (EMA) captures dynamic processes suitable to the study of suicidal ideation and behaviors. Artificial intelligence (AI) has increasingly been applied to EMA data in the study of suicidal processes.

Acoustic Features for Identifying Suicide Risk in Crisis Hotline Callers: Machine Learning Approach.

Journal of medical Internet research
BACKGROUND: Crisis hotlines serve as a crucial avenue for the early identification of suicide risk, which is of paramount importance for suicide prevention and intervention. However, assessing the risk of callers in the crisis hotline context is cons...

Validation of a machine learning model for indirect screening of suicidal ideation in the general population.

Scientific reports
Suicide is among the leading causes of death worldwide and a concerning public health problem, accounting for over 700,000 registered deaths worldwide. However, suicide deaths are preventable with timely and evidence-based interventions, which are of...