Design of 1-year mortality forecast at hospital admission: A machine learning approach.

Journal: Health informatics journal
Published Date:

Abstract

Palliative care is referred to a set of programs for patients that suffer life-limiting illnesses. These programs aim to maximize the quality of life (QoL) for the last stage of life. They are currently based on clinical evaluation of the risk of 1-year mortality. The main aim of this work is to develop and validate machine-learning-based models to predict the exitus of a patient within the next year using data gathered at hospital admission. Five machine-learning techniques were applied using a retrospective dataset. The evaluation was performed with five metrics computed by a resampling strategy: Accuracy, the area under the ROC curve, Specificity, Sensitivity, and the Balanced Error Rate. All models reported an AUC ROC from 0.857 to 0.91. Specifically, Gradient Boosting Classifier was the best model, producing an AUC ROC of 0.91, a sensitivity of 0.858, a specificity of 0.808, and a BER of 0.1687. Information from standard procedures at hospital admission combined with machine learning techniques produced models with competitive discriminative power. Our models reach the best results reported in the state of the art. These results demonstrate that they can be used as an accurate data-driven palliative care criteria inclusion.

Authors

  • Vicent Blanes-Selva
    Instituto Universitario de Tecnologías de la Información y Comunicaciones. Universitat Politècnica de València. Camino de Vera s/n. 46022 Valencia, España.
  • Vicente Ruiz-García
    Instituto de Investigación Sanitaria La Fe, Spain.
  • Salvador Tortajada
  • José-Miguel Benedí
    Universitat Politècnica de València, Spain.
  • Bernardo Valdivieso
    Unidad Mixta de Tic aplicadas a la reingeniería de procesos socio-sanitarios ERPSS, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 46026 Valencia, Spain.
  • Juan M García-Gómez
    Biomedical Data Science Lab. Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politécnica de Valéncia, Camino de Vera s/n, Valencia 46022, Spain. Electronic address: juanmig@ibime.upv.es.