The human visual system and CNNs can both support robust online translation tolerance following extreme displacements.

Journal: Journal of vision
PMID:

Abstract

Visual translation tolerance refers to our capacity to recognize objects over a wide range of different retinal locations. Although translation is perhaps the simplest spatial transform that the visual system needs to cope with, the extent to which the human visual system can identify objects at previously unseen locations is unclear, with some studies reporting near complete invariance over 10 degrees and other reporting zero invariance at 4 degrees of visual angle. Similarly, there is confusion regarding the extent of translation tolerance in computational models of vision, as well as the degree of match between human and model performance. Here, we report a series of eye-tracking studies (total N = 70) demonstrating that novel objects trained at one retinal location can be recognized at high accuracy rates following translations up to 18 degrees. We also show that standard deep convolutional neural networks (DCNNs) support our findings when pretrained to classify another set of stimuli across a range of locations, or when a global average pooling (GAP) layer is added to produce larger receptive fields. Our findings provide a strong constraint for theories of human vision and help explain inconsistent findings previously reported with convolutional neural networks (CNNs).

Authors

  • Ryan Blything
    School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK. Electronic address: ryan.blything@bristol.ac.uk.
  • Valerio Biscione
    School of Psychological Science, University of Bristol, Bristol, UK.
  • Ivan I Vankov
    University of Bristol, United Kingdom.
  • Casimir J H Ludwig
    School of Psychological Science, University of Bristol, Bristol, UK.
  • Jeffrey S Bowers
    University of Bristol, United Kingdom. Electronic address: j.bowers@bristol.ac.uk.