Prioritizing Pain-Associated Targets with Machine Learning.

Journal: Biochemistry
PMID:

Abstract

While hundreds of genes have been associated with pain, much of the molecular mechanisms of pain remain unknown. As a result, current analgesics are limited to few clinically validated targets. Here, we trained a machine learning (ML) ensemble model to predict new targets for 17 categories of pain. The model utilizes features from transcriptomics, proteomics, and gene ontology to prioritize targets for modulating pain. We focused on identifying novel G-protein-coupled receptors (GPCRs), ion channels, and protein kinases because these proteins represent the most successful drug target families. The performance of the model to predict novel pain targets is 0.839 on average based on AUROC, while the predictions for arthritis had the highest accuracy (AUROC = 0.929). The model predicts hundreds of novel targets for pain; for example, GPR132 and GPR109B are highly ranked GPCRs for rheumatoid arthritis. Overall, gene-pain association predictions cluster into three groups that are enriched for cytokine, calcium, and GABA-related cell signaling pathways. These predictions can serve as a foundation for future experimental exploration to advance the development of safer and more effective analgesics.

Authors

  • Minji Jeon
    Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea.
  • Kathleen M Jagodnik
    Fluid Physics and Transport Processes Branch, NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA.
  • Eryk Kropiwnicki
    Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States.
  • Daniel J Stein
    Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
  • Avi Ma'ayan
    Department of Pharmacology and Systems Therapeutics, Department of Genetics and Genomic Sciences, BD2K-LINCS Data Coordination and Integration Center (DCIC), Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY, USA avi.maayan@mssm.edu.