New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water.

Journal: The Science of the total environment
Published Date:

Abstract

Haloketones (HKs) is one class of disinfection by-products (DBPs) which is genetically toxic and mutagenic. Monitoring HKs in drinking water is important for drinking water safety, yet it is a time-consuming and laborious job. Developing predictive models of HKs to estimate their occurrence in drinking water is a good alternative, but to date no study was available for HKs modeling. This study was to explore the feasibility of linear, log linear regression models, back propagation (BP) as well as radial basis function (RBF) artificial neural networks (ANNs) for predicting HKs occurrence (including dichloropropanone, trichloropropanone and total HKs) in real water supply systems. Results showed that the overall prediction ability of RBF and BP ANNs was better than linear/log linear models. Though the BP ANN showed excellent prediction performance in internal validation (N = 98-100%, R = 0.99-1.00), it could not well predict HKs occurrence in external validation (N = 62-69%, R = 0.202-0.848). Prediction ability of RBF ANN in external validation (N = 85%, R = 0.692-0.909) was quite good, which was comparable to that in internal validation (N = 74-88%, R = 0.799-0.870). These results demonstrated RBF ANN could well recognized the complex nonlinear relationship between HKs occurrence and the related water quality, and paved a new way for HKs prediction and monitoring in practice.

Authors

  • Ying Deng
    College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
  • Xiaoling Zhou
    College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
  • Jiao Shen
    College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
  • Ge Xiao
    College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
  • Huachang Hong
    College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China. Electronic address: huachang2002@163.com.
  • Hongjun Lin
    College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
  • Fuyong Wu
    College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China. Electronic address: wfy09@163.com.
  • Bao-Qiang Liao
    Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.