Quaternion Projection Rule for Rotor Hopfield Neural Networks.
Journal:
IEEE transactions on neural networks and learning systems
Published Date:
Feb 4, 2021
Abstract
A rotor Hopfield neural network (RHNN) is an extension of a complex-valued Hopfield neural network (CHNN) and has excellent noise tolerance. The RHNN decomposition theorem says that an RHNN decomposes into a CHNN and a symmetric CHNN. For a large number of training patterns, the projection rule for RHNNs generates large self-feedbacks, which deteriorates the noise tolerance. To remove self-feedbacks, we propose a projection rule using quaternions based on the decomposition theorem. Using computer simulations, we show that the quaternion projection rule improves noise tolerance.