A Deep Learning Model for Classification of Endoscopic Gastroesophageal Reflux Disease.

Journal: International journal of environmental research and public health
Published Date:

Abstract

Gastroesophageal reflux disease (GERD) is a common disease with high prevalence, and its endoscopic severity can be evaluated using the Los Angeles classification (LA grade). This paper proposes a deep learning model (i.e., GERD-VGGNet) that employs convolutional neural networks for automatic classification and interpretation of routine GERD LA grade. The proposed model employs a data augmentation technique, a two-stage no-freezing fine-tuning policy, and an early stopping criterion. As a result, the proposed model exhibits high generalizability. A dataset of images from 464 patients was used for model training and validation. An additional 32 patients served as a test set to evaluate the accuracy of both the model and our trainees. Experimental results demonstrate that the best model for the development set exhibited an overall accuracy of 99.2% (grade A-B), 100% (grade C-D), and 100% (normal group) using narrow-band image (NBI) endoscopy. On the test set, the proposed model resulted in an accuracy of 87.9%, which was significantly higher than the results of the trainees (75.0% and 65.6%). The proposed GERD-VGGNet model can assist automatic classification of GERD in conventional and NBI environments and thereby increase the accuracy of interpretation of the results by inexperienced endoscopists.

Authors

  • Chi-Chih Wang
    Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
  • Yu-Ching Chiu
    Master Program in Medical Informatics, Chung Shan Medical University, Taichung 402, Taiwan.
  • Wei-Liang Chen
    Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
  • Tzu-Wei Yang
    Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
  • Ming-Chang Tsai
    Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
  • Ming-Hseng Tseng
    Department of Medical Informatics, Chung Shan Medical University, Taichung 402, Taiwan.