Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts.

Journal: Radiology
Published Date:

Abstract

Background Digital subtraction angiography (DSA) generates an image by subtracting a mask image from a dynamic angiogram. However, patient movement-caused misregistration artifacts can result in unclear DSA images that interrupt procedures. Purpose To train and to validate a deep learning (DL)-based model to produce DSA-like cerebral angiograms directly from dynamic angiograms and then quantitatively and visually evaluate these angiograms for clinical usefulness. Materials and Methods A retrospective model development and validation study was conducted on dynamic and DSA image pairs consecutively collected from January 2019 through April 2019. Angiograms showing misregistration were first separated per patient by two radiologists and sorted into the misregistration test data set. Nonmisregistration angiograms were divided into development and external test data sets at a ratio of 8:1 per patient. The development data set was divided into training and validation data sets at ratio of 3:1 per patient. The DL model was created by using the training data set, tuned with the validation data set, and then evaluated quantitatively with the external test data set and visually with the misregistration test data set. Quantitative evaluations used the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) with mixed liner models. Visual evaluation was conducted by using a numerical rating scale. Results The training, validation, nonmisregistration test, and misregistration test data sets included 10 751, 2784, 1346, and 711 paired images collected from 40 patients (mean age, 62 years ± 11 [standard deviation]; 33 women). In the quantitative evaluation, DL-generated angiograms showed a mean PSNR value of 40.2 dB ± 4.05 and a mean SSIM value of 0.97 ± 0.02, indicating high coincidence with the paired DSA images. In the visual evaluation, the median ratings of the DL-generated angiograms were similar to or better than those of the original DSA images for all 24 sequences. Conclusion The deep learning-based model provided clinically useful cerebral angiograms free from clinically significant artifacts directly from dynamic angiograms. Published under a CC BY 4.0 license.

Authors

  • Daiju Ueda
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan. ai.labo.ocu@gmail.com.
  • Yutaka Katayama
    From the Department of Diagnostic and Interventional Radiology (D.U., A.Y., T.S., S.D., A.S., Y.M.) and Department of Premier Preventive Medicine (S.F.), Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; LPixel, Tokyo, Japan (M.N., A.C., Y.S.); and Department of Radiology, Osaka City University Hospital, Osaka, Japan (Y.K.).
  • Akira Yamamoto
    From the Department of Diagnostic and Interventional Radiology (D.U., A.Y., T.S., S.D., A.S., Y.M.) and Department of Premier Preventive Medicine (S.F.), Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; LPixel, Tokyo, Japan (M.N., A.C., Y.S.); and Department of Radiology, Osaka City University Hospital, Osaka, Japan (Y.K.).
  • Tsutomu Ichinose
    From the Departments of Diagnostic and Interventional Radiology (D.U., A.Y., S.L.W., H. Tatekawa, H. Takita, T.H., A.S., Y.M.), Neurosurgery (T. Ichinose, H.A., Y.W., T.G.), and Medical Statistics (D.K.), Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; and Department of Radiology, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan (Y.K., T. Ichida).
  • Hironori Arima
    From the Departments of Diagnostic and Interventional Radiology (D.U., A.Y., S.L.W., H. Tatekawa, H. Takita, T.H., A.S., Y.M.), Neurosurgery (T. Ichinose, H.A., Y.W., T.G.), and Medical Statistics (D.K.), Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; and Department of Radiology, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan (Y.K., T. Ichida).
  • Yusuke Watanabe
    From the Departments of Diagnostic and Interventional Radiology (D.U., A.Y., S.L.W., H. Tatekawa, H. Takita, T.H., A.S., Y.M.), Neurosurgery (T. Ichinose, H.A., Y.W., T.G.), and Medical Statistics (D.K.), Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; and Department of Radiology, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan (Y.K., T. Ichida).
  • Shannon L Walston
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
  • Hiroyuki Tatekawa
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
  • Hirotaka Takita
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
  • Takashi Honjo
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
  • Akitoshi Shimazaki
    From the Department of Diagnostic and Interventional Radiology (D.U., A.Y., T.S., S.D., A.S., Y.M.) and Department of Premier Preventive Medicine (S.F.), Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; LPixel, Tokyo, Japan (M.N., A.C., Y.S.); and Department of Radiology, Osaka City University Hospital, Osaka, Japan (Y.K.).
  • Daijiro Kabata
    From the Departments of Diagnostic and Interventional Radiology (D.U., A.Y., S.L.W., H. Tatekawa, H. Takita, T.H., A.S., Y.M.), Neurosurgery (T. Ichinose, H.A., Y.W., T.G.), and Medical Statistics (D.K.), Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; and Department of Radiology, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan (Y.K., T. Ichida).
  • Takao Ichida
    From the Departments of Diagnostic and Interventional Radiology (D.U., A.Y., S.L.W., H. Tatekawa, H. Takita, T.H., A.S., Y.M.), Neurosurgery (T. Ichinose, H.A., Y.W., T.G.), and Medical Statistics (D.K.), Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; and Department of Radiology, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan (Y.K., T. Ichida).
  • Takeo Goto
    From the Departments of Diagnostic and Interventional Radiology (D.U., A.Y., S.L.W., H. Tatekawa, H. Takita, T.H., A.S., Y.M.), Neurosurgery (T. Ichinose, H.A., Y.W., T.G.), and Medical Statistics (D.K.), Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; and Department of Radiology, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, Osaka, 545-8586, Japan (Y.K., T. Ichida).
  • Yukio Miki
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.